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Quantum-computing ideas are applied to the practical and ubiquitous problem of fluid dynamics simulation.
Hence, this paper addresses two separate areas of physics: quantum mechanics and fluid @yrspeiws-
cally, the computational simulation of fluid dynamic¥he quantum algorithm is calledguantum lattice gas
An analytical treatment of the microscopic quantum lattice-gas system is carried out to predict its behavior at
the mesoscopic scale. At the mesoscopic scale, a lattice Boltzmann equation with a nonlocal collision term that
depends on the entire system wave function, governs the dynamical system. Numerical results obtained from
an exact simulation of a one-dimensional quantum lattice model are included to illustrate the formalism. A
symbolic mathematical method is used to implement the quantum mechanical model on a conventional work-
station. The numerical simulation indicates that classical viscous damping is not present in the one-dimensional
quantum lattice-gas system.
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[. INTRODUCTION sented. The simulation method uses symbolic mathematics to
implement a quantum mechanical system in the second
quantized representation. A globally phase-coherent wave
The purpose of this paper is to show that a phase-cohereRinction is simulated on a classical computer. This is pos-
quantum computer can be used to simulate the behavior of ghje because the number of spatial sites of the lattice is
system of massive quantum particles, propagating and cokmall and the number of qubits per site is few. The main
liding on a discrete space-time lattice. This discrete quanturfinding from the simulation is that it is possible for mass-
particle system is called quantum lattice gasl have used density waves to oscillate indefinitely. The simulation con-
principles and concepts from quantum mechanics instead @frms that there is no viscous damping in the hydrodynamic
from classical mechanics to formulate “local rules” for an sound mode of the artificial fluid.
artificial microscopic particle dynamics. In a quantum lattice
gas, this is possible because a network of two-energy-level B. Background

guantum systems is used to encode the configuration of par- i i
ticle occupancies throughout the lattice. Other types of quantum lattice gases have been studied,

There are two parts to this paper. First, | analyze a gloPeginning in the mid 1990s, by Bialynicki-Birufd], Succi
bally phase-coherent and entangled quantum lattice-gas syl&-3l: Meyer[4,5], and Boghosian and Tayl¢6] to model
tem governed by the many-body Sctimger equation of the relativistic Dirac equation and the nonrelativisitic Sehro
quantum mechanicdsThe many-body Schinger equation dinger equation. In contrast, the macroscopic scale behavior
is reformulated as a Boltzmann equation of kinetic transport®f the quantum lattice gas presented here is classical, even
Assuming the quantum computer's wave function does nothough the microscopic scale dynamics is quantum mechani-

decohere by uncontrolled entanglement with the externdf@l rather than classical in nature. The quantum lattice gas
world, the main analytical result of this paper is the deriva-reduces to a cI_asswa_I Iattlce gas on.Iy if the collision process
tion of a lattice Boltzmann equation that exactly describec@USes a particular incoming configuration of particles to
kinetic transport at the mesoscopic scale in the quantum lagcatter into only one single “outgoing” configuratién.

tice gas. That is, the lattice-Boltzmann equation is an exact !N tWo previous papers on quantum lattice gases], |
representation of the particle dynamics, including all effectonsidered a quantum spin system where the system wave
due to quantum superposition and entanglement. This refofunction was collapsed into a tensor product state over the
mulation of many-body quantum mechanics represents SPNS (or qubity after each collision step. This allows for
quantum computing application geared towards the diredocal entanglement to occur temporarily and avoids global

simulation of physical dynamical models. A hydrodynamic €ntanglement altogether when the particles propagate
fluid simulation is considered here as a test case. through the latticg7]. Allowing for only short-range and

Second, numerical data taken from an exact simulation o$hort-time entanglement of qubits, the quantum lattice-gas

a globally phase-coherent quantum lattice-gas system is préyStém is described at the mesoscopic scale by a lattice
Boltzmann equation, with a local collision operator that

obeys the principle of detailed balani& (we may refer to
URL:http://thiS model as dactorized quantum lattice gadt provides a

A. Overview

*Email address: Jeffrey.Yepez@hanscom.af.mil;
xyz.plh.af.mil

The quantum state of the quantum lattice gas is said tglbe
bally entangledvhen qubits in the system are entangled with other 2This follows since it is a direct generalization of a classical lattice
qubits in the system positioned arbitrarily far away in the lattice. gas with quantum bits replacing classical bits.
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way to implement the lattice Boltzmann equation in an un- Il. ANALYTICAL TREATMENT
conditionally stable manner on a classical computer. Al-
though quantum mechanical ideas inspired the formulation
of the collision process, in the end, the factorized quantum [N quantum computing9,10], a two-level quantum bit
lattice gas is a probabilistic classical process. The salierfcalled aqubit) represents the smallest unit of information
feature of the factorized quantum lattice-gas formulation ighat may be in a superposition of the discrete stfigsand
that it is suited for implementation on an array of small quan{1)- A qubit|q)=a|0)+ B|1) has an amplituder of being
tum computers, interconnected by a classical communicatiolft thezero statg|0), and another amplitude of being in the
network. Therefore, the previous papers do not address tH@ne state|1). The complex coefficients are constrained by
situation where quantum superposition and entanglement car|*+[8|°=1 so that the probability of the qubit being in
spread throughout the entire quantum computer. This situdhe zero state plus the probability of it being in the one state
tion is treated here. is unity. For any unitary quantum computation, one can de-
scribe the algorithm by specifying a unitary evolution opera-

C. Organization tion, in our case formally written ag'" "%, acting on the
In Sec. Il, I introduce thegjuantum lattice-gas formulation system wave functior|:¥ (t)), which constitutes the state of
! éhe quantum computer’s “memory.” WitiN qubits, the

from an analytical perspective. The quantum lattice gas i . . . .
treated at the microscopic and mesoscopic scales in Se(%uantum state (1)) resides in a large Hilbert space witfl 2

Il A and Il B, respectively. When the quantum computer is
fully coherent throughout the entire course of the simulation
the collision operator is nonlocal. Evaluating it requires
knowledge of the entire system wave function on the quan-

A. Microscopic scale

imensions. A new quantum std¥ (t+ 7)) is generated by
application of a unitary operatdwhich could be represented
by a unitary matrix of size %x 2N) for a short duration- as

_ niH A
tum computer. An exact representation of the quantum lattice [W(t+m)=e V(). 2.9
gas’ mesoscopic behavior is developed in Sec. Il B. Its me-
soscopic behavior is governed by a lattice-Boltzmann equa- .

tion. By repeated application of'" ™", an ordered sequence of
The quantum lattice-gas formalism is presented from sstates is generated and each one is given a unique time label.
numerical perspective in Sec. Ill. The numerical methodoldf the first state is labeled bythen the next one is labeled by
ogy used in the simulation of the quantum system is pret+ 7, and the next by+ 27, and so forth. In this way, think
sented in Sec. Il A. The numerical method discussed in Se®f the computational timeadvancing incrementally in unit
lIIA1is based on a representation of a universal quantundteps of duratiorr. Of course the state of the quantum com-
gate expressed in terms of the creation and annihilation opyuter exists at all intermediate times, sayt atr/2, but for
erators. The symbolic rules used to carry out the exact simug,,, purposes we need to consider only the state at intervals
lation is described in Sec. Il A 2. A simple one-dimensional o¢ the time stepr. Formally, the quantum computer’s evolu-

lattice-gas model, used in this paper for test purposes, iy js invertible by application of the adjoint of the evolu-
described in Sec. Il B. | have included various computer;o operator

simulations with both classical and quantum mechanical mi-
croscopic dynamics. The classical and quantum mechanical

versions of this simple one-dimensional lattice-gas model, T

called the1D3Px modelare described in Secs. Il B 1 and [W(t-7)=e (D). 2.2

[Il B 2, respectively. Simulation results are presented in Sec.

[l C. The classical and quantum mechanical simulations re-

sults are presented in Secs. Il C 1 and Il C 2, respectivelyIhis computational picture is consistent with the Heisenberg
The classical simulations, provided for comparison purposegicture of quantum mechanics. For any reversible algorithm
are done at the microscopic scale and also in a classic&hosen, the task is to map the algorithm onto the dynamical
mesoscopic mean-field approximation. Then, | present an exevolution of interacting qubits within the physical device,
act simulation of the quantum 1D3Px model, with three qu-which can be driven by external control.

bits per site for small systems. Approximation schemes are
needed to compute the many-body dynamics on a classical
computer, except in the case of very small system size or
systems with very few particles. An exact quantum simula- Consider a quantum computer with qubits arranged in a
tion of a small cluster, comprising 21 qubits, is carried out onlattice-based array with the following properties:

a conventional workstation using a symbolic mathematics (1) V is the number of lattice sites.

technique that is described in Sec. Il A. The numerical (2) B is the number of qubits per sitand the number of
simulation gives us a way to understand the quantum latticeaearest neighboyrs

gas method in concrete terms and is a necessary step toward(3) N=VB is the total number of qubits.

1. Preliminaries

achieving numerical simulations on quantum computers. (4) 2V is the size of the full Hilbert space.
A brief summary of the results and a few closing remarks (5) 28 is the size of the on-site submanifold, denotéd
are given in Sec. IV. (and the number of on-site configuratipns
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TABLE I. Ket symbols.

|~1f(x1,...,x*v;t>>={ > (A aw)

Symbol Size of manifold Description 1. --- 0N
| 2N Total system ket X[q)®---®|an). (2.9
) 2® On-site ket

Here the summation indices, are either zero or one, for
1<a<N. Each tensor produdi;)®---®|qy) is a basis
state and¥) is a pure classical state. The number represen-

At each site of the lattice resides a group of qubits actedation(2.4) is used in the numerical quantum simulation pre-
upon by a sequence ghiantum gatef10—13, whose action sented in Sec. Il C. | would like to establish a convention
is mediated by external control. The quantum lattice gasfor representing the system ket as a linear combination of

evolution can be formally expressed as a special case of ENsor product states that are lattice-site specific. [Lot
(2.1) whereeH =3¢ as follows: enote aron-site ketformed over the qubits at a single site

of the lattice

la) 2 Qubit, local state ket

|W(Xq, ... Xy;t+1))=8C|¥ (X, ... Xy;1)). (2.3 )
win)= > @, Ge)

In Eq. (2.3), S is the streamingoperator, which in matrix 1----08

representation is an orthogonal permutation matrix with
components being either 0 or $.is the “classical” lattice-
gas streaming operator. However, in Eg.3), C is not a  The system wave functiof2.4) can in general also be ex-
classical operator. It is a unitagpollision operator. In gen- pressed as a linear combination of tensor product states over
eral, when expressed in matrix for@,has complex compo- all the on-site kets

nents.(The quantum lattice gas reduces to a deterministic

classical lattice gas i€ is a p_)ermutatlon_ matrix Wlth Oorl W (Xy, ... Xyit))= 2 Ay - )
components. If and whef is stochastically switched be- AR py

tween different permutation matrices during the dynamical X|g)® - - ® i) 2.6
evolution, then the quantum lattice gas reduces to a probabi- 1 v/ '

listic classical lattice gagFinally, in Eq.(2.3), | have ex- _ e _
plicitly labeled the wave function’s dependence on all theWhere the shorthand nOtat'(i’.m”):l"b(X”’t)) is used. Here
(for 1=n=<V) in the sum represent the num-

coordinates of the lattice to emphasize that the wave functiof'® indicesy, ) : , ;
is a lattice-based field quantity. bered basis states in the on-site manifldSo they are in

J - . the range & ¢,<28—1. The coefficients4 account for all
In general, the operatd can cause mixing of outgoing . . X
L : : . . the global superpositions between lattice sites.
collisional configurations at each site of the lattice, locally
entangling the gqubit states within a lattice cell of sizeThe

operatorS then causes particles to move from one site to the . ) ) )
next, by exchanging qubit states between nearest neighbor- Collisions are implemented independently at each site of
. . C A . the lattice. Hence, all sites can be collided in parallel, homo-
ing sites. Although the application & causes the particles . o N

to move just as they would in the streaming phase of a C|a§_3eneously across thg entire system. The collision ppefator
sical lattice gas, it also causes global superposition and er therefore expressible in tensor product form since local
tanglement of all the qubit states, if local entanglement ha§uantum superposition of outgoing on-site configurations oc-

already been caused @ In this way, quantum entangle- curs only within each 2-dimensional submanifold. The

. . a Nx 2N isi ix C i i
ments are spread throughout the lattice by the actio8. of 272 COIIISIO.n matrixC can be written as the following
. . : - tensor product:
I will use the following convention for indices.
(1) Small roman lettersg,b,c) for the momentum direc-

X[gy(x,0))® - ®|qe(x,1)). (2.5

3. Unitary collision matrix

tions on the latticeae {0, ... B—1}. C=oU, (.7
(2) Greek letters &,8,y) for specifying qubits, « x=1
e{0,... N—-1}.
(3) Middle roman letters i(j,k) for the spatial dimen- where theon-site collision matrix Uis a 22X 28 unitary
sions,ie{1, ... D}. matrix. It acts on the on-site ket
2. System wave function |¢’()z,t))= U|¢()Z,t)>. (2.9

Let |¥), |¢), and|q) denote theotal system kebn-site
ket and qubit ket repectively, as shown in Table I. The The prime on the left-hand sideéHS) of Eq. (2.8) indicates
guantum computer’s total wave function can in general behat the ket is amutgoingcollisional state. Using the repre-
expressed as a linear combination of tensor product stategntation2.6) of the system ket, the postcollision system ket
over all the qubits is
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W/ (Xq, ... Xy D)Y=Cl¥(Xq, ... Xy;b)) f () =f.(x,)=Tre(t)n,]. (2.11)
= S Ay, . )0 In the literature gn clafsicgl lattice gases and the lattice-
{vg, ..., v} Boltzmann equationf,(x,t) is referred to as thesingle-
N particle distribution functionand it is defined at the mesos-
X|g)@ - - @Ulhy) copic scale. For classical lattice gases, numerical estimates of
) ) fa(i,t) are obtained either by ensemble averaging over many
- E , A (s o) independent microscopic systems or by coarse-grain averag-
Wy Pyt ing over space-time blocks with a single microscopic system.
X[y @ - ®| ). (2.9 For the quantum lattice gas, tHg(x,t) is the expectation

value of the operatoﬁa determined by repeated measure-
An equivalence clasis defined as a set of basis states thatment of single microscopic realizations or by direct measure-
correspond to particle configurations with the same mass angent of an ensemble, as occurs in nuclear magnetic reso-
momentum(and energy if that is also defined in the lattice- nNance quantum computef4,15. So the definition(2.11)

gas model The on-site unitary collision operatdt acting — also defined ,(x,t) at the mesoscopic scale.

on the B-submanifold itself is block diagonal over the Let an denote the first local state within the group of
equivalence classes. Consider, for example, the quantuiocal states at positioﬁof the Bravais lattice. In addition, let
1D3Px lattice gagsee Sec. Il B 1 for a detailed description , | correspond to the displacement veosgr Next, suppose

of the 1D3Px lattice-gas modelThere are two conserved the |ocal states are numbered in a systematic and well-
quantities for this one-dimensional system: the mass and thgygered fashion so that each local state ac+a, for all

momentum along the axis. Hence, there is only one equiva- ac{0,1,... B—1}, resides at positior. Note that with this

lence class and it has two members, a two-body head-on ! L . : .
) i . . ; . .~ “humbering scheme, the directional indaxassociated with
configuration and a configuration with a single rest particle

i : - , the ath local state, is found by the modulus operatian
Both configurations haven=2 andp=0. The equivalence _(, modB). Then, the local mass density and the momen-

class is comprised of the following on-site kets: tum density atx andt can be expressed in terms of the

13)=1011), occupancy probabilitya(i,t) following the convention used
to define the mass and momentum densities in a classical
|14)=|100 lattice gas
B an+B
A general outgoing ket in this mass-momentum sector of the ;(x t)= lim > mfy(x,t)=Ilim > mTr[e(t)n,],
on-site submanifold is a linear combination of these two, /¢—0a=1 /-0 a=ag
(2.12
«|011) + B|100), (2.10

B
wherea and are complex numbers. So the collision matrix ~ P(X,Dvi(X,H)= lim X mceyfa(X,1)

U for this one-dimensional quantum lattice gas has one /5087t

block. It has a Z 2 block for mixing the head-on and rest aot+B R
particle configurations. In general, is block diagonal over :/"Lno a;ao MC€ (o moasyi TT[E(D)N,].
the equivalence classEgsg|. Each block ofU, associated with '

an equivalence class of size is a member of theéJ(n) (213

unitary group. . )
The mass and momentum densities are considered “macro-

scopic” field quantities. They are only well defined in the
continuum limit where the primitive cell size of the lattice
1. Occupancy probability and the mass and momentum densities@pproaches zero. However, for practical considerations, they
are approximated by high resolution grids with small but
finite cell size.

To experimently determine the mass density or momen-
*  tum density at a sit& at timet in an actual guantum system,
‘Ee”Ote the numper operator for théh local stgte. That is, it is necessary to know the probability of occupancy of all
n,[W(t)) has eigenvalue 1 or O corresponding to thh the local states at that sitg(i,t) fora=1, ... B, according

local state being occupied or e_mpty at timé\ f_unda_mental to the definitiong2.12 and(2.13. The probability of occu-
construct of the quantum lattice-gas formalism is that the

probability of occupancy ,(t) is expressed in terms of the pancyfa(i,t) of each local state dependés on the pﬁolarization
quantum mechanical density mat@(t)=|W (t))(¥(t)| as Of the corresponding qubit |ga(X,t))=aa(x,1)|0)
the following trace: + Ba(x,t)|1). A Von Neuman measurement of the state of

B. Mesoscopic scale

The probability of occupancyat timet of the ath local
state is denoted (t). Let the ath local state be associated

with a displacement vectoe, at positionx. Also, let n,
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TABLE Il. Two neighboring qubits. (\I’(t)|éfﬁa§r|‘I’(t+ T)):(‘P(t)|CTﬁaé|\I’(t)),

. 2.1
Qubits |a) l9") 13
Local state N o which JerAch)r;e by multlpl_ymg th_rougr_lwrfiom the left by
Position M X =48, (¥(t)|C™n,S'", and then using 'Ehe I(ile[]tl@ S=1. From the
Momentum 5—mca, 5=p identity (2.14), we know thatn,S"=S'n,, . Using this fact

in the above equation allows us to write it as

this qubit will yield a value of either 0 or 1, with probability (PO|CTS"nG [ W (t+ 1) =(T(1)|CTn,ClP(1)).
laa(X,1)|? or | Ba(X,1)|?, respectively, since the measurement (216
causes a collapse of the quantum wave function. A singlghe “bra” vector on the LHS of this equation can be sim-
value obtained by this stochastic measurement process is ngfified using the adjoint of Eq(2.3), which is (¥ (t+7)|
sufficient to determind ,(x,t). Therefore, to obtain an esti- =(¥(1)|C'S', so that we obtain the following result:

mate of the expected equilibrium values of the mass and

momentum densities, it is necessary to either ensemble aver- (W (t+7)|n,,|¥(t+7))=(¥(t)|C'n,C|¥(t)).

age over many realizations of the microscopic system or (2.17
coarse-grain average over space-time blocks within a single ]

microscopic realization. In this regard, the amount of effortUsing Eq.(2.11) and referring to Table Il, Eq(2.17) ex-
needed to obtain estimates of the densities is identical for thresses the probability of occupancy of local stateat site
quantum system and classical lattice-gas sysytems. A quam-+/'¢e, at timet+ 7 in terms of a matrix element evaluated
tum computer that provides a direct means for measuring thgt the neighboring site and at the earlier time That is,
expected state of a qulisuch as is possible with an NMR

quantum computérwould be a more natural choice for fo(X+/ a0, t+ 1) =(¥(t)|CT,ClP (). (2.18
implementing this quantum lattice-gas algorithm.

If measurements were made at each and every site, and ate may addfa(i,t)—<\If(t)|ﬁa|\lf(t)), which vanishes by
every time step of the dynamics, then the quantum lattice-gagefinition, to the right-hand sideRHS) of Eq. (2.18. Then,
system is effectively “factorized” in such a way that the we recognize Eq(2.18 is a transport equation for the par-
quantum computer’s wave function is always collapsed intaicle occupancies. The result is a lattice-Boltzmann equation
a tensor product state. This type of factorized quantunfor the quantum lattice-gas system
lattice-gas simulation, with continual and homogeneous mea-
surement of the qubits, results in a probabilistic classical fa(X+/ 8, t+7)=F(X,1) +QTW),  (2.19
lattice-gas simulatiof8]. Yet, even in this case, the value of
the transport coefficients can differ from those of the classiwhere the collision term is expressed as the following matrix
cal lattice gas. element:

2. Mesoscopic transport equation QIesQg) = (W (1)|CTh,C—n,|W(1)). (2.20

Let us consider two quglﬂﬂz and|q’), which are located A aiternative derivation of Eq2.20), carried out in the
at neighboring siteg andx’ =x+/"e,, respectively. I shall " continuum limit, is given in Appendix A. In practice, we will
refer to the local states encoded by these two neighboringot be able to analytically evaluate E(.20 for a large
qubits by their numerical labels: and o', respectively. quantum lattice-gas system with global entanglement be-
Next, suppose these local states may be occupied by particlgguse of the exponential size of the) ket. However, it is
with momentummce, . Following this construction, the ac- possible to formally express the collision te@{'**°when
tion of the streaming operat@ causes a particle to move |¥) is represented as the linear combinati@®). This is
from sitex to the neighboring sit&’, hopping from local ~done as follows:

statea with momentumﬁ =mce, to local statex’ with the

same momenturp’ = p. This labeling convention is summa- Qgesoz{w ’ > ol (0 > . A*(rr s o pyr)
rized in Table Il. With this understanding, we can write the e Vi v
(WIn W) =(¥|Sn, SW). (2.14 (P | CTR,E— Nyl Yr)® - -~ @), (2.21

This is a simple mathematical way of stating the following: Moreover, it is possible to expre€a™=°in terms of the
If you make a measurement of the occupancy of local state it b ton hich i ted b
before streaming, the result you get must be the same gyr-sie num_ er op(.erez ONa, W 'C_ IS represen.e y a
The first step toward deriving a microscopic transportth® qubits at a single site. We write théqubit number
equation for the quantum lattice gas is to rewrite &93) as  operatorn, as aV-fold tensor product that has a single
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B-qubit number operaton, located at thenth site index Then using Eq(2.22), the lattice-Boltzmann equation for the
corresponding to the position vectfarq as quantum lattice-gas system becomes a local equation that

can be easily simulated on a classical comp[ife].
N,=181®---®N,®--- 81, (2.22 3. The approach to steady-state equilibrium

where 1 denotes the 2x 2B identity matrix. The collision The system is said to be isteady-state equilibrium
operatorCn,C—n,, can then be written as (which may also be callethermodynamic equilibriupjnvhen

“ “ the system ke W®{t)) is an eigenvector, with unity eigen-

1910 -@(0Mn0-n)e-  ol=aY_Q,, value, of the collision operatd,
(2.23 A
Clwen=|wed, (2.30
where
The value of the probability of occupan¢®.1]) is then de-
R 0',0-n,, X=X, termined from|¥*% as
0a=| . (2.24 )
| otnerwise. PS4, ) = (W), [ o). (230

Using Egs.(2.7), (2.22), and the orthonormality of the

Noti th finition(2. f i -stat ilibri
on-site kets{ /| ¥n)= 81, EQ. (2.21) reduces to a local otice by the definition(2.30 for steady-state equilibrium,

the collision term(2.20 in the lattice-Boltzmann equation

matrix element evaluated at single sﬁ,e=>zn=>2 as vanishes,
Q?esozz 2 Q;ﬂesﬂq’e%)=0. (2.32
ot A, - v} e
' Y Therefore, at steady-state equilibrium, the occupancy prob-
XA (Prs oo a1 Pnsss - y) abilities are unchanging over time. That igF®% is the
~pa A ground state of the system. The distribution along the mo-
XA, - s - )P UTNGU —ngl ). mentum directions of the particle occupancies are uniform,

(2.25 so the local configurations are perfectly symmetric, and
Q7**°cannot cause any further changes.
Let us make the following definition:

I1l. NUMERICAL TREATMENT
R ibn)= , > A. Methodology
1. Universal two-qubit gate

XA*(dll!"'id/n—lrl//n/!l/fn+l!"'!lr//V) X . . . i X
In this section, | write a two-qubit universal gate in terms
XA, -y ). (2.26  of the creation and annihilation operators of the second quan-
] . tized formulation of quantum mechanics. A classic text on
The quantityR (¢, 4y) represents the superposition of the secong quantization is by Fetter and Walegké]. For our
on-site basis states at sikewith all the other on-site basis purposes, the two-qubit gate is a member of the special uni-
states in the system at the other sites. With this definitioniary group SW2); I neglect the overall phase factor because

Eq. (2.29 can be written in a simpler way, this does not affect the quantum lattice-gas dynamids. i
a member of S(®), it can be parametrized using three real

Qgeso:; ; R(Pnr )t |0 TR0 — Ny ). numbers¢, £, andé as follows:

(2.27 R e'écosh —€e'‘sing

- . . 3.1)
. . . _eiL e it (
If each on-site state is not entangled or superposed with any e ''sing —e '*cosf

other on-site state, theR can be written in factorized form, - . . o
R ) = C(4 ) C(h). In this case, Eq2.27) is simpli-  Leta, anda, denote the creation and annihilation operators

fied, for ath spin of a fermionic quantum spin system. Then the
spin4 creation and annihilation operators satisfy the anti-
Qmes (g1 07,0 — Ryl ) (2.29 commutation relations
a [l .
2 Aty
where the coefficient§(¢,) specify any local superposition {aq,a5t=d4p, (3.2
and entanglement o
{aa !aﬁ} = 01
=2, C . 2.2 s on
) =2 Clumlum) (229 (&1l -o.
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The spin number operator=a’a, has eigenvalues of 1 and WhereX is a symbol used to deno?e what | call ntnell_ state
0 in the number representation when acting on a pure staté)at accommodates Pauli ex]g:lusmn and destruction on the
corresponding to théth spin being ups,=3 and down Vvacuum. Thatis, the symboé&s anda represent the single-

s,=—1, respectively. spin (or single qubit creation and annihilation operators, re-
Consider a fermionic spin system with a totallfspins ~ SPectively. . . _
whose system ket is denoted p¥). Acting on this system Next, all the basis states, in the number representation, are

ket with a unitary operator, we would like to entangle the€ncoded by the symbol[s], where 0<s<2"-1, for a

two spin states, the states of thth andth spins, according System withN spins. That is, the states are binary encoded
to the components of the special unitary mati®1). Let ~ and labeled byN-bit integers. The staté’[0] is called the

Y .5 denote a square™x 2N matrix that does this. | define vacuum stateThe symbolic rules embodying the multiple-
Y, in terms of the multispin creation and annihilation op- SPIN creation aqd annihilation operators are defined in terms
erators as follows: of the single-spin rules

Y. z=1+e ‘singaja,+e‘sindalaz—(1+¢€'fcoso)n, (—D%a'l(s\2%)=a]

aT[a,\P[s]]z[

1—e " écosf)n,—2i si én,n 3.3 0 Ts=x,
(1—e '*cosf)n,z—2i siné coson,ng (3.3 (3.12
for a# B. Its matrix representation for a two-qubit system is (—1)%a[(sA\2%) = a]
1 0 0 0 a[“'q’[s]]:[o, if s=N,
0 €'‘cosh —€e‘sing 0 (3.13
Y= it i . (3.9 .
0 —e'*sing —e *cosé¢ O where 0<a<N—1 and where the factor{1)S« appearing
0 0 0 -1 in Egs.(3.12 and(3.13 accounts for a phase change of

radians induced by commuting spins. In the number
In Appendix B, | demonstrate why , ; is manifestly unitary ~ representation each basis state is denoted by a ket
and an appropriate formulation of a universal quantum gatdn,n,---n,---ny), where eachn is either 1 (particle
In the special case whef= /2, £&=0, and{=0, then present or 0 (no particle preseit The phase factog, is

Y, reduces arinterchange operator defined by
Xaﬁ51+é;éa+azéﬁ_ﬁa_ﬁﬂ' (35) Sa:n1+n2+"'+na,l. (314)
which is anOT gate(see Appendix B The bitwiseAND operation is denoted here by the symbal
_ _ The symbol= denotes a bitwise barrel roll to the right. That
2. Symbolic mathematics method is, “s=j” means shift the integes to the right byj digits.

It is possible to simulate the exact quantum mechanicaHence, the result of the operations/(\2*)=«" is either 1
evolution of a quantum spin system using computationabr 0, depending on whether or not a particle occupieshe
symbolic mathematics. To test the quantum lattice-gas local state. Notice that the symbai$ anda are overloaded,
method, | implemented the algorithm using version 4 ofso that when they are used with a single argument, that ar-
MATHEMATICA [17]. Letting 1 and O represent spin up and gument is interpreted as a spin valuealf and a are used
spin down, respectively, the first step is to define a set ofvith two arguments, the first argument is interpreted as a
rules that encode the Fermionic anticommutation relationspin-index and the second argument is interpreted as a ket.

(3.2 Notice that these symbolic definitions of the multiple-spin
creation and annihilation operators use the basis-state symbol
a'l0]=1, (3.60 ¥ on the LHS of the rules, bu¥ is not used at all on the
RHS in the definition of the rules. Hence, it may seem that
a[1]=X, (3.7 the use of the symboV is superfluous here. However, this is
not the case, because its use allows me to define the action of
a'[N]=N, (3.8)  the creation and annihilation operators on a superposition of
basis states in a recursive fashion:
a[0]=N\, (3.9
a'la,AV[s]+B]=Aa'la,¥[s]]+a'«a,B], (3.19
a[l]=0, (3.10
+B]= + . .
a[N]=, (319 ala,AV[s]+B]=Aa «a,V[s]]+a[a,B]. (3.16

Using this convention, it is possible, for example, to destroy
a spin in local statew of a superposed state, say[s;]
3| developed this symbolic method in 1991 at Brandeis Univer-+W[s,], by directly supplying this state as the second argu-
sity, see http://xyz.plh.af.mil/Papers/pdf/ae91.pdf ment. Then, Eq(3.13 correctly expands out to
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ala,V[s1]+V[s;]]=ala,Y[s1]]+ala, ¥[s]]. The lattice-gas collision operator according to E2.7)
(3.17  fortheV=7/ system is thus defined as a sevenfold compo-
sition
If the special symbolV' were not used, then one would get
the wrong answer, C[¥]=U[20,21,190[17,18,16U[14,15,13J[11,12,10,
ala,s,+s,]=ala,s;], (3.18 xU[8,9,7U[5,6,4U[2,3,1W 111111 (3.22

This is actually handled recursively in the symbolic imple-

wheress is the numerical sum d$; ands,. Of course, itis oo s works regardless of the size of the system
possible to use a special symbol in place of the plus sign to ' 9 y ’

represent superimposed states. | have chosen not to do this.The streaming operator for the quantum Ia;tlce 9as 1S
With the ¥ symbol ConventionMATHEMATICA can by de- |mpl'emented using two rules, one to stream the right moving
fault manipulate expressions involving the superposition of artlcles_, Idenc()jte& ' ;nd the otk;]er tcr)] strga;]m the .|Eﬁ mov-
an arbitrary number of states and represent them in memoryY particles, denoted_ . Note that the right moving par-

in a compact fashion. After the action of the collision opera-, cles OC.ClIpr local sta}tes 5'5’8’11’14’17’20 and the Ieftdmov—
tor (which is mathematically defined earlier in this paper and/19 particles occupy local states 3,6,9,12,15,18_3,1.an_
symbolically defined immediately belowen to a superposed S_ are defined in terms of a sevenfold composition of inter-
state, the resulting new state in general has identical bas@ange operators.5):

states that are repeated in the superposition, where each oc- S.[W]=x[2,5x[58x[8,11x[11,14x[14,17,

currence has a different amplitude. Using thesymbol con-

vention, all these types of replications are automatically re- X x[17,20¥ 111111, (3.23

duced down to the one term, SINCRIATHEMATICA

automatically adds coefficients of common terms. S_[W]=x[21,18x[18,15x[15,12x[12,9x[9,6,
Next, the multiple-spin number operator is defined as a

composition of the multiple-spin creation and annihilation X x[6,3 ¥ ]1111- (3.29

rules

Again, these are handled recursively in the symbolic imple-
ot mentation, so the streaming operators work regardless of the
e, ¥]=aleale,W]] (319 size of the system. A global shift of particles is done by
With rules (3.12, (3.13, and(3.19, for the creation, anni- successive local interchanges of particles occupanti@s

hilation, and number operators, it is then straightforward tot Flnallty, thg ?xolutlon ruI(_a:[., den?iﬁﬂ :‘orttrtlr(]a entlrel quan-
implement the universal gate, E@®.3), by composition: um system Is the composition of the fast three rues

U[s;,s,, V=¥ —Ca'ls,,a[s;,V]]-Ba'[s;,a[s,,¥]] EL¥]=CLS, [S-[¥11. (329
_ _ Any other compound rules that may be needed in a simula-
FAZDNSE V1H(D-nls, V] tion can be defined in a similar fashion by composing pre-
—(A+D)n[s;,n[s,, V1], (3.20 defined simpler rules. Therefore, beginning with a superposi-

ton of basis state® (t) = =, V[ s] the dynamical evolution
where thec numbersA, B, C, andD are components of an equation corresponding to E(.3) is
SU(2) matrix (2 B).

In the case of the quantum 1D3Px model, the collision O(t+7)=E[D(1)], (3.26
operator mixes the on-site ket*g_()_ll) and |1O.O>' Three where the result is a new superposition over a different set of
qubits are affected. | use a modified rule to directly handlebasis stated (t+ 7) = 3o, b W[ ' ]
this situation. The on-site collision operator for the 1D3Px s s '
guantum lattice gas is implemented by the following compo-
sition of universal gates: B. The 1D3Px model

1. Classical version

U[S1a,S16,52, ¥ ]=V¥ —~Ca'[s;,a[s1a,a[S15, ¥]]] . . .
Let us consider a simple lattice-gas model as a concrete

—Ba'[s1a.,a'[s1p.a[s,, V1] example, called th&D3Px lattice-gas modgin this paper.
This model was first studied by Qian in 19909] and is
—(1=A)n[sya,nlsy,, V1] referred to as Model | in his thesis. The lattice gas is one

—(1-D)n[s,,¥] dimensional and has three.bits per site, a rest particle with
mass two and speetl 1 particles with mass one. The mass

+(1-D)n[s14,n[s2,V]] and momentum at a lattice site is

+(1-D)n[sz,n[s1p,¥]] m=2ny,+n;+n, and p,=n;—n,. (3.27

~(A=D)n[sia.n[sip.nlsz, W11 There are two local configurations both with=2 and p,
(32]) :0 (1) {n01nlvn2}:{11010} and (2) {nO!nlan}:{Oalvl}

046702-8



QUANTUM LATTICE-GAS MODEL FOR COMPUTATIONAL . .. PHYSICAL REVIEW E 63 046702

o head-on rest Na(X+ /e, t+7)=ny(x,t) +Qy(n,). (3.3
——— °

For the 1D3Px model, the lattice vectors &g=0, e;=X,

ande,= —x and the collision term is specified by the single

function

FIG. 1. Head-on collision in the 1D3Px lattice-gas model. The
single equivalence class has=2 andp,=0.

These two configurations are members of the only collision Q=nny(1—ng)—Ng(1—n;)(1—n,), (3.32
set (which is called arequivalence clags An equivalence
class has two or more members. Figure 1 illustrates th&here(),= and();,=— . Then explicitly for the 1D3Px
equivalence class of the 1D3Px model. Its two elements armodel, the microscopic transport equati@31) is
the configuration of two head-on particlg®l L and the con-
figuration with a single rest particlgl00}.

Because the total number of particles and the total mo-
mentum must be conserved, the collision part of the dynam-

ics can only permute the local configurations. The collision |agice-Boltzmann equation describes the dynamics of the
equation, which is applied homogeneously across the lattice,n3p, lattice-gas system at the mesoscopic scale. The me-

;:(;a”r:)\lt;:. expressed as in terms of a mapping funcioas soscopic average of the occupation variab;éi,t) is the
' probability of occupancy

fa(X,1)=(na(X,1)). (3.39

Here, the angle brackets around a microscopic quantity de-
note its mesoscopic expectation value obtained by ensemble
averaging. The kinetic transport equations are

No(X,t+ 7) =ng(Xx,t) + Q(x,1), (3.33

Ny XE/ 1+ 7)=ng (X,1) — Q(X,1).

s'=U(s), (3.28

whereU maps 2 configurations to 2 new configurations.
For the simple 1D3Px latticd) is

u({011})={100},
fo(X,t+7)="To(X,t) +{Q(X,1)), (3.39
u({100})={011}.
fraxx/t+71)="11AX1)—(Q(X1)).
If a configurations is not a member of an equivalence class,
thenU(s)=s. In other words, if the incoming state is not a TO carry out a classical lattice-gas simulation at the mesos-
member of an equivalence class, then the outgoing state Ropic scale, we can approximafE™*{x,t)=(Q(x,t)) by a
set equal to the incoming state. To speed up a lattice-ga®ean-fieldcollision term, denoted2™(x,t), that neglect
simulation, the mapping functiob) may be precomputed particle-particle correlations:
before the simulation and accessedankup tablefashion
during the simulation. <Q(X,t)>szf(X,t) =fafa(1—1fo) —fo(1—f1)(1—1y).
In a computer implementation, it is convenient to use two (3.36

arrays to simultaneously store the stad@mds’. Therefore, A statement of detailed balance can be written by setting the

in Eq. (3.28, data in the array that stores the “incoming” mean-field value of the collision tert3.36) to zero at equi-
states is transformed by the action of the lookup taltde |iprium

(which is applied homogeneously over the entire ariayd
the output is written into the next array to store the new (Q)=Qm(f% =0, (3.37
“outgoing” states’.

It is conventional to write the collision rule in terms of the Therefore, the probability of occupancies satisfies the equa-
occupation variables,=1 or 0, which are Boolean values. tion
The collision rule, expressed for an individual local state, is
written £ 5

eq_ )
Lo+ (1— 19 (1— 139

(3.3

0
NL(X,t) =na(X,t) +Qa(n,), (3.29
This equation, along with equations for the mass and mo-
where the collision termQ,(n,)==*1 or 0. Writing mentum densities
Q,(n,) with an asterisk subscript on, denotes that the
collision term for theath local state depends on all the on- po=2fg+ 9459 and u,=f{%f59 (3.39

site local states. It is conventional to write the streaming rule ) ) o
in terms ofn, also, gives us a nonlinear system of three equations in five un-

knownsfgd, £39, 59, po, andu,s . Hence, it is possible to
Na(X+ /€5, t+ 1) =n4(X,1). (3.30  analytically solve for the occupation probabilitié§’, 79,
andf5%in terms ofpo andu,o . When the system is at rest
Combining Egs(3.29 and(3.30, themicroscopic transport  at equilibrium,p,=0, thenf{%= f5%=d and the probability
equationis therefore of occupancy for the rest particle state is
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d? 3
fol=—————. (3.40 2
1—-2d+2d? 51
Using Eg. (3.36, the Jacobian of the collisiond, 3 i
=00 9fp|eq is 9 :2
\
— — -3
—1+2d—2d? (1~dyd (1~-dyd 0o 1 2 3 4 5 6
1-2d+2d? 1-2d+2d? Wave Number k (2m/)
J= 1-2d+2d? (d-1)d (d-1)d enlarged view
- 1-2d+2d2 1-2d+2d? 1
S 0.5
1-2d+2q2 47D (d—1)d S 0
1-2d+2d? 1-2d+2d? s
o -0.5
(3.4) m )
The eigenvectors aof are 0 0.2 0.4 0.6 0.8 1
|1>_(2 1.1) (3.42 Wave Number k (2m/)

FIG. 2. The real part of the dispersion relation for the mesos-
|2> =(0,1-1), (3.43 copic 1D3Px lattice gas in the long wavelength limit and mean-field
limit at a reduced background density @ 0.214 286.
(1—2d+2d?)?
3)= W:Ll : (344 This is a cubic equation ia®, and it is analytically solvable.
The only hydrodynamic mode is a damped sound wave
The eigenvectorsl) and |2), corresponding to mass and w(k)=*ck+il'(p)k?. Real and imaginary parts of the dis-
momentum, span a two-dimensional hydrodynamic subpersion relations for the 1D3Px lattice-gas model are shown,
space. The remaining eigenvect8) is a kinetic eigenvec- respectively in Fig. 2 and Fig. 3. The real part of the disper-
tor, which in this case is density dependent. The eigenvaluesion relations indicates a sound mddee(w) — +ck ask

of J are —0]. The imaginary part of the dispersion relation for the
hydrodynamic mode is parabolic for small wave numbers,
A=0, (3.49 indicating viscous damping of the sound mofken(w)
—T'k? ask—0]. The sound damping constaitapproaches
A2=0, (3.46 zero as the background mass density approaches[ 6o

That is, low-mass density waves can oscillate without vis-
_ 1—2d+6d2—8d>+4d* cous damping.
Ns= —1+2d—2d2 ' (3.47 The real part of the dispersion relation for the sound mode
for the 1D3Px lattice-gas model set with a background den-
Now using the lattice vector®,=0, &,=1, and e, Sity of d=6/4V, with V=7/is shown in Fig. 2. The real
——1, and the expression fdrgiven in Eq.(3.41), we set Part of the dispersion relation indicates a sound mode

the secular determinant of the linearized Boltzmann equatiohRe(®@)— *ck as k—0 where c;=0.74//7]. The data
equal to zero points, plotted as black circles, are solutions to the linearized

Boltzmann equation in the mean-field limit. The curves with
[(e/akron_1)5 3 1=0. (3.48  slope of*c, are numerical linear fits to the data. The imagi-
nary part of the dispersion relation for the sound mode for
This allows us to solve for the dispersion relations for the

lattice-gas system obeying what is callgeheralized hydro- 2

dynamics Equation(3.48 is a result from the generalized _ li7§ ™ /
hydrodynamics of classical lattice-gas systems previously E 1 25 N // /
worked out by Das, Bussemaker, and Ef2€f and Grosfils, ; 1 i

Boon, Brito, and Ernsf21]. Taking /=7=1, we get the o 0.75 VTN
following dispersion relation: " 002'2 /// /
(1—2d+2d?)e3*—2[d—3d?+4d3—2d* o 1 2 3 4 5 6

umb k 2n/i
4 (1-3d+ 3d?)cosk]e? (3.49 Have Number ke (2r)

FIG. 3. The imaginary part of the dispersion relation for the
+(1—2d)[1+2d(d—1)cosk]e®+4d?3(d—1)?=0. mesoscopic 1D3Px lattice gas in the long wavelength limit and
(3.50 mean-field limit at a reduced background densitydef0.214 286.
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Single Lattice Site

One-Dimensional Lattice Network

Ig,(1)> [a,(2)> |qp(3)> [ag(4)> |qg(5)> |y (6)> |qe(7)>
lay (11> |qu(2)> | (3)> [qu(4)> |qu(5)> |ay(6)> |q(7)>
la, (L)> [ay(2)> [ay(3)> [ay(4)> |a,(5)> [q,(6)> [ay(7)>

PHYSICAL REVIEW E 63 046702

FIG. 4. A one-dimensional array of quantum

computers with three qubits per node.

the 1D3Px lattice-gas model is shown in Fig. 3. The imagi- BoB1B2
nary part of the dispersion relation indicates sound damping
[Im(w)—iTk? ask—0 wherel'=0.08/%/ 7. The parabola BoPra
is a numerical fit to the data in the region of smiaft 1. The Boa1B2
calculations shown in Figs. 2 and 3 were done with a mass aBoay s+ bagBLBs
density filling fraction ofdo=6/4V=0.214, where a small
system size ofV=7/ is used. In this casek=2n/V CapB1Bz2t+daoBpBz
=0.898. apBrar

] agayBz

2. Quantum version
Qo1
A hypothetical lattice-based quantum compuigvith

computational sites depicted as cirdlesranged as a one- 1000000O0 BoB1B2
dimgnsional Iatl;ice is shownhin Fig. 4|. At ?;wh I/attice site 01 00 0 0 O O pBoBias
residesB= 3 qubits in 1D in this example witk'=7/" sites.
The on-site ket ) resides in a B-dimensional submanifold. 00100 00 0 Boaif
The large circle on the right represents an expanded view of O 0 0Oa b 0 O0@O Boaas
this on-site submanif_old, which is denoted By'_l'he basis _ 0 00c dooOoO aoB1Bs |
states of3 are shown in the number representation. Each site
is coupled to its nearest neighboring sites by a mechanism 0 0000 1 0 0 appiaz
allowing for the exchange of qubits. If the exchange mecha- 0 000 0 0 1 0°f agaifB,
nism retains all quantum entangleméand thereby spread-
ing it through the quantum compujerthen the quantum 0000000 Fo¥1%2
computer is considered fully coherent. If the exchange (3.52

mechanism is classicadlestroying quantum entanglement by

collapsing the wave functionthen it is called aype Il quan- ~ Where the local collision operator is thex® matrix with
tum computefwhich is simply a large array of small quan- one 2<2 block, which is a member of the (B) unitary
tum computers interconnected by a classical communicatiofiroup satisfying

network. 5 5 5 5

The associated 1D3Px quantum lattice-gas model has |al“+[b|*=]c|[*+[d|*=1, (3.53
three qubits per sitdg,) = a,|0)+ B,|1) for a=0,1,2. The
zeroth qubit represents a rest particle of mass two and the ac*+bd*=a*c+b*d=0, (3.54
first and second qubits represent moving particles of speeds
+1, translating in the right and left going directions, respec- la|?+]|c|?=|b|?+|d|*=1, (3.59
tively.

The m=2, p,=0 equivalence class is spanned by the ab*+cd*=a*b+c*d=0. (3.56
stateg100) and|011). Collisional entanglement occurs only
between these two stateg,100)+ x|011), where ¢ and y The quantum 1D3Px lattice gas obeys detailed balance
arec numbers. The on-site kely)=|qo)®|q1)®|qy), is because the collision operatoris a unitary matrix8].

The mass and momentum densities for the quantum

lattice-gas system are

|y = BoB1B2|11) + BoB1a,|110) + Boar1 B/ 101)
+ Boaya;|100) + apB182/011) + apB1a|010)
+a0a1,82|00]>+a0a1a2|000>. (35])

Ux={(01/N[d1) —(d2/N|dy).

p=2(qo|N|qo) +(danlas) +{az/nlaz),  (3.57

(3.58

The outgoing on-site kety'y=U|y) is

Viscous dissipation does not necessarily occur in quantum
lattice-gas systems. Global entanglement of the wave func-
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FIG. 5. Damping of a mass density wave for a system With7 sites in the classical 1D3Px model simulated using a mesoscopic
Boltzmann equation with the collision term expressed in the mean-field approximation. The background delpsit$/idv=0.214. The
ordinate is the absolute value of the amplitude of the mass-density wave divided by the peak amplitude of the initial perturbation.

tion significantly complicates the dispersion relations, which C. Simulations
are determined by the following equation: 1 Classical simulation
A time history of the mass density wave for a small sys-
et tem with V=7/ sites is shown in Fig. 5. The exponential
Det (&" %" “"—=1) 5, envelope is analytically determined by an analysis of the
linearized lattice-Boltzmann equation in the mean-field limit
(9<\I,eq|(0‘rﬁa0_ﬁa)®l®. @1 v (see Fig. 3 The predicted sound damping constdnt
- =0, =0.08"?/7 is in excellent agreement with the simulation
ar data.

(3.59 Plotted in Fig. 6 are damping time constants of mass den-
sity waves in the classical 1D3Px lattice gas for different
system sizes fronv =2/ up toV=2567". The log-log plot

where V¢4 is the steady-state equilibrium wave funtion, shows the power-law behavior, known diffusive ordering
which is the ground state of the system. | have explicitlytypical of a lattice-gas system in the viscous regime. The
written the collision operator, as in E(.23, in spatially — power law in this case i§=0.44/2, which is parabolic.
separated form. In general, as described in Sec. 181, Each circle is determined from a mesoscopic scale simula-
=an+a, whereag is an index that refers to the first local tion that was initialized with a sinusoidal perturbation of
state at some particular site in the system. According to th@p=0.04m//" from a uniform background mass density at
ordered numbering scheme used,=0 at the first site of half-filling, p=2m//". The damping constaiit=/?/T is de-

the systemp =B at the second siteyo=2B at the next terr/qmed from the envelope of the resulting standing wave
site, and so on. Without loss of generality, in E§.59 we € = coset (see Fig. 5 The mean-field estimates of the

can assume we are working at the first site of the systerl@mping time constant are the circles. The line is a linear
wheren,=n,®1® - - - ® 1. In the classical cas€ is a per- gesf[ fit to trlles?. isltlrr;ates. The elst|mbatﬁd (_jamp|r;]g consltlant
mutation matrix and the steady-state equilibrium wave func- eviates on y slig ty_ rom power-law e“av'lor. at”t € small-
tion is a tensor product over the on-site kets est system sizes. This is an example of “fluidlike” behavior
occurring in systems far below the continuum limit. The in-
set plot is a linear plot of the data fot< 16 and the parabola

v is the same diffusive-ordering power-law in the larger log-
[TEh= @ |§°9. (3.60  |og plot.
x=1

2. Quantum simulation

In turn, the on-site kets are formed by a tensor product over | have tested the quantum lattice-gas formalism described

the individual qubits in this paper by carrying out exact numerical simulations of
B 810000
= @ (V1) +1-f0)). (3.60) § 1000
a=1 g
8 100
Finally, f$%=d andf&’=d?/[d?+ (1—d)?] according to Eq. § 10
(3.40. The Jacobian of the collision matrix element appear- ) i i

ing in Eq. (3.59 is computable using Eq$3.60 and(3.61) 1
[see Eq.(3.4) in Sec. lll B 1]. In the quantum mechanical

case,| W% is not expressible as a tensor product state, and

hence the Jacobian of the collision matrix element appearing FIG. 6. Diffusive ordering in the classical 1D3Px model com-
in Eq. (3.59 becomes complicated. puting at the mesoscopic scale using the mean-field approximation.

1 2 5 10 20 50 100 200
Number of Sites (1)
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FIG. 8. Initial mass density sinusoidal perturbation in the quan-

FIG. 7. Mass and momentum sectors of the 1D3Px lattice-gadM 1D3Px lattice gas for a small system sizeVot 7/ with peri-
model with V=7/"sites plotted versus the number of states perodlc boundary conditions. The total number of qubits in the simu-
sector. lation is BV=21. The simulation is initialized with a sinusoidal

perturbation in them=6, p,=0 mass-momentum sector with a
peak amplitude oBp=0.4 from a uniform background mass den-

In this section, | present results obtained from the numerica}®, & Po=25=0.857. So the fractional mass density variation is
initially one part in two, which is an extremely large-scale fluctua-

simulation of a small system with=7/ sites. | have used . -
. . . . . tion. The wavelength equals the system size. The initial mass den-
the symbolic numerical technique described above in Sec

L. S . Sity field is not exactly sinusoidal, because aside from the limitation
A2 The_ p“”C'pf"" finding is t.hat the quantum lattice gas of only V=7/ sites, it is produced by the interference of all 5376
does not display viscous damping.

> ; in them=6 andp,=0 sector. An algorithm using Lagrangian mul-
Since the evolution operator conserves mass and momeRyjiers maximizes the entropy of the resulting wave function and

tum, we can divide the Hilbert space into disjoint mass-chooses all the amplitudes of the initial state.

momentum sectors. When the lattice-gas evolution operator

maps a particular state residing in a mass-momentum sector o ) o

to a new state, the new state must also reside in that sanféPWever, it is computationally advantageous to limit the
mass-momentum sector. The Hilbert space for the7/ simulation to a single sector of the Hilbert space, so that
system has over two million dimensions. The number off€émory allocation in the computer is kept at a manageable
states within each mass-momentum sector ofhe7/ sys-  level. Figure 8 shows a maximized entropy state used in the
tem are graphically illustrated in Fig. 7. The density plot ontest simulation presented in this section.

the left side of Fig. 7 clearly shows that the allowable mass- The data from the simulation run is presented in several
momentum sectors are all contained within a hexagonalvays. First, the peak amplitude of the mass density wave is
boundary. The distribution for the number of available statesecorded after every time step. The amplitude is normalized
within a mass-momentum sector is reflection symmetridn such a fashion that at time=0 it has unity value. In a
about half-filling (m=14) and about zero momentunp,(  viscous fluid with sound damping, the peak amplitude would
=0). oscillate and decay exponentially in time by the factor,

| have simulated the/=7/" system(with BV=21 glo- e /“cos(2rcd//), wherec, is the sound speed ardlis a
bally entangled qubilsin the massm=6 and momentum positive definite damping constant as is shown in Fig. 5.
px=0 sector. In this mass-momentum sector, there are 5378owever, for the quantum 1D3Px model, the numerical re-
basis states. The goal of the numerical test was to measugilt indicates” may be zero for certain collision operators.
the sound damping constant in the quantum 1D3Px model A time series history of the square of the peak amplitude
and compare the result to the mean-field estimate. The syss plotted in Fig. 9, using the same format as Fig. 5 for the
tem was initialized with a sinusoidal perturbation of the masslassical 1D3Px model with the same grid size and initial
density field, with a wavelength equaling the grid size of thecondition. In the quantum simulation, the peak amplitude
periodic system X=V). All the states in then=6, p,=0  does not decay in time, unlike the results obtained in the
sector were superposed by choosing amplitudes in such @assical lattice-Boltzmann simulations shown in Fig. 5. Ini-
fashion that the entropy of the initial state is maximized,tially, within the first couple of dozen time steps, the peak
subject to the independent constraints of conservation cimplitude appears to decay, very much like it does in a clas-
probability, mass, and momentum. The entropy function wasiical microscopic simulation or lattice-Boltzmann simulation

a 1D3Px model, which is described in detail in Sec. Il B 1

taken to be of the 1D3Px model. However, the amplitude does not con-
tinue to damp in subsequent time steps. The peak amplitude
_ 5 5 B 2 B 2 rises and falls. No damping is observed even after a thousand

S ; [leaInleal*+(1=fe)In(1=]e %], time steps. An expanded view of the first 250 time steps is

(3.62  shown underneath. Since the algorithm is unit@nyd hence
the collisions obey the principle of detailed balantiee dy-
wherec,, is the amplitude of the kéta) in the m=6, p, namics is reversible.
=0 mass-momentum sector. Given a particular desired pro- In Fig. 10, these data are presented in scatter plot fashion,
file of the mass density field, it is more difficult to construct where the square of the normalized peak amplitude is plotted
an initial state that completely resides in only one sector thawersus its first order time derivative. | used the following
to use an initial state that spans the entire Hilbert spacdlifference formula to approximate the time derivative:
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PwksU
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0.5 1 1.5 2 2.5 3 3.5
Wave Propagation Speed (c¢)

0 =0 P00 e 1(2)0 200 250 FIG. 11. Time history of the mass density at site 6/ for a
system withV=7/" sites plotted versus time. A discrete Fourier
FIG. 9. Oscillations of a mass density wave in the quantumtransform of this time series data is taken to ghfE(x)p,(X). A
1D3Px lattice gas for a system size\o& 7/ in the m=6 andp, peak in the power spectruh)m|2 occurs at about 0.72 7, which is
=0 sector. The ordinate is the absolute value of the amplitude oflose to the expected sound speed. The abscissa is converted into
the mass-density wave divided by the peak amplitude of the initialinit of velocity,c=//, to show that there is a unique sound speed.
perturbation. The ordinate has units ofr(//'x 7)2.

Normalized Peak
cooo
OB

2 20y 4y 2 the time series collected by measuring the fluctuation of the
"X, ~P Otz n)=p (Xt 1) (3.63 mass density field of th&# =7/ quantum 1D3Px lattice-gas

Jt 27 system. The signal, which ig(6/,t), is measured at site
=6/. Plotted below is the power spectrum of the Fourier
The data appear randomly scattered, but is clustered alongteansform of the signal, which ilp,|?, versus sound speed
“cone” corresponding to the speed of sound in the 1D3PX(this is proportional to the oscillation frequeng,=/f). A
model, which the Boltzmann analysis of Sec. Il B 1 predictspeak in the power spectrum occurs just below the mean-field
to bec=0.74"/7. approximation of sound speeti=0.74// 7, which is plotted

To obtain a more accurate estimate of the sound speed s the vertical bar(See Fig. 2 for the mean-field value esti-
the quantum 1D3Px simulation, a Fourier transform of themate ofc;.)

time series history of the mass density at a single site of the

system was computed and the power spectpdjtx)p,,(X) IV. CONCLUSION
plotted (see the bottom plot of Fig. 11The top plot shows

The main results of this paper are as follows.

The quantum mechanical wave equation is recast as a
lattice-Boltzmann equation describing a quantum lattice-gas
system.

The continuity and Navier-Stokes equations constitute a
macroscopic effective field theory for the quantum lattice-
gas system and quantum entanglement changes the value of
the transport coefficients.

A symbolic math method was presented for simulating
N A dynamical quantum systems.

With reversible microscopic-scale dynamics, a feature of

6 0.2 0.4 0.6 0.8 1 classical lattices is that dissipation occurs at the macroscopic

Normalized Peak scale. However, viscous damping is not observed in simula-

) ) tions of the quantum 1D3Px lattice-gas model, which is also
FIG. 10. Normalized peakabsolute value of the amplitude of microscopically reversible.

the mass-density wave divided by the peak amplitude of the initial -~ 11,¢ g5,nd speed of mass density waves is the same as the
perturbation versus the first derivative of the normalized peak of classical value
oscillations of a mass density wave in the quantum 1D3Px lattice - . .
: iy - = Given the memory and speed constraints of classical com-
gas for a system size &f=7/" in them=6 andp,=0 sector. We .
Juters, today only small quantum lattice gas can be exactly

have plotted maximum speed curves corresponding the individu lated. 1 h " d test simulati f th
particle velocity,c= = //7. As expected, all the data are contained simulated. ave periormed many test simulations of the

within this “cone.” In addition, we have plotted sound-speed duantum 1D3Px model for system sizes ranging from
curves corresponding .= = 0.74// 7, which is analytically deter- — 3/ UP toV=7/ and have included results from the
mined from a mean-field approximation of the system using the= 7/ quantum simulation in the paper, since this was the
linearized lattice-Boltzmann equation. Most of the data is clustered@rgest computer run.

around the sound-speed curves, and additional data points scattered! do not wish to argue that results obtained for such a
within the “sound-speed cone” indicates randomness in the oscilsmall system, withv=7/" sites, can give us too much in-
lation of the mass density wave. sight about the true macroscopic behavior of the quantum

Normalized Peak Change
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lattice gas, which is Only well defined in the continuum limit. the ath local state located at positi&rgiven by Eq(21]) is
Further testing is required on larger systems and in two anghe following matrix element:

three dimensions and will be presented in a subsequent pa-

per. Yet, in the classical version of the model, hydrodynami- f()_()’ﬁyt)z<\lf(t)|ﬁa|\ll(t)>_ (A1)
clike behavior is observed in very small systefsse Figs. 5
and 6. The type of behavior found in the small=7/ quan- | assumef(x,p,t) is a continuous and differentiable mesos-

tum lattice-gas system may also occur for larger systems. Seopic field quantity. For the moment, suppose thés the
quantum lattice gases of multiple grid sizes should be simulocal state of an “incoming” particle, preceding a possible
lated. To this end, a compiled version of quantum lattice-gasollision event. | still want to imagine the particle dynamics
code is being developed FORTRAN 90and will be run on  divided into mutually exclusive eventsollision followed by
available supercomputers. streaming repeated in stepwise fashiau infinitum Next,
The issue of the similarity or distinction between particle-the probability of finding a particle in the local state,
particle correlationgas occurs in classical lattice gasesd corresponding to momentump’ at position X' =x
guantum entanglemerias occurs in quantum lattice gagses >, .
has not been addressed in this paper. Yet, this is an issue th?il( T/m)p’, is expressed by the matrix element

can be studied using quantum lattice-gas simulations. f(>2+(7/m)f)’,f)’,t+T)E(\P(HT)IF]Q,I\P(H ).

(A2)
ACKNOWLEDGMENTS
] ) Supposea’ is the local state of the “outgoing” particle.
I would like to thank Bruce Boghosian for many helpful Then a basic definition of the total time derivative of
discussions about classical and quantum lattice gases, in pa}r(-)z 5 ) is the following ratio:

ticular, his suggestion to use a maximal entropy state as the
initial state of the quantum lattice-gas simulation. This al-
lowed me to constrain the quantum dynamics to a single
mass-momentum sector of the full Hilbert space, and thereby dt 70 T
speed up the symbolic computation. In the lattice-gas and

lattice-Boltzmann literature, differential notation is applied Of. in terms of the matrix elements, it is
to lattice-based mesoscopic fields with the understanding that .

the system is being analyzed in the continuum limit. Thisis ~ df(X,p,t)

usually not clearly explained, and may cause some confu- dt

sion. | would like to acknowledge Hugh Pendleton for sug-
gesting not to indiscriminately use differential point-form

df(x,p,t f(x+(7/m)p’,p’ ,H)—f(X,p,t
(p)E”m( (r/m)p’,p’,1) (p)’(AB)

(W (t+ 1) [N [V (t+ 7)) = (P (1), P (1))

notion when describing the lattice-gas system at the mesos- - L"L I
copic space-time scale, since the mesoscopic-scale superlat-
tice is discrete after either coarse-grain or ensemble averag- (A4)

ing.
g This is the seed of a Boltzmann equation for particle trans-

port and the RHS of this equation constitutes the collision
term, although this may not appear quite obvious at this point
in the development. In the following development, | shall
interpret the collision term and rewrite it so that it explicitly

In this appendix, | would like to rederive the transport depends only oﬁa at positioni and|¥(t)). In so doing, we
equation(2.19 for the quantum lattice-gas system. The deri-shall see how the collision dynamics is inherently encoded in
vation given here is carried out in the continuum liiibag-  this expression.
ine a space-time lattice with infinite resolution as the cell First, we add zero to the RHS of the above equation to
size vanishes All the usual restrictions arising from the dis- write the collision term in two parts, explicitly separating the
cretization of the microscopic quantities are temporarily re-total change into “temporal-change” and “spatial-change”
moved. A particle can exist at any point in space and timeparts, as follows:

and it can also have any momenthnﬁF mu. The only as- - -
sumption | make here is that | can still decompose the space df(x,p,t)
time into an ordered set of local states, which in this case is dt
infinite but denumerable. That is, | imagine there are an in-
finite number of local states at each point in spaBe-¢°),

one corresponding to every possible particle momentum.

APPENDIX A: DERIVATION OF THE QUANTUM
LATTICE-GAS TRANSPORT EQUATION
IN THE CONTINUUM LIMIT

iy (P DN () = (P (1) [P (1)

7—0 T
Since the number of points in the space is also infinife (
=), the total number of local states are doubly infinite (W) [ W (D)~ (¥ (1)|n,| ¥ (1))
(N=BV=x?). Nevertheless, | assume the local states are + lim - .
well ordered and denumerable. 70
The probability of finding a particle with momentufnin (A5)
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From the time-displacement operatione™f(x,p,t) This result is expected, since in quantum mechanics, the par-

_ f(i,f),tJr 7), we see that the first term on the RHS of thet'al time derivative of an operator is found by calculating the

above equation is a partial derivative with respect to time commutator of that operator_with the Hamiltonian. Using this
q P P result, the Boltzmann equatidA5) becomes

af (x+ (7/m)p,p,t)

+0(Sh) df(x,p,t) i ..
7 TP L Wl A ()
i (P DI [P (4 1) = (P (D] [V (1) -
o T ' +Iim<\P(t)‘ « a‘I’(t)>. (A11)
(A6) e

A\_Iow the RHS no longer depends ph(t+ 7)) (so it is local

free time to the characteristic length scale £SHt). Simi- in time), but it is still nonlocal in space because it depends on
; ﬁa, as well. That is, if the RHS of the above equation were

larly, from the space-displacement operatieff, Vf(x,p,t) Nor then d have “atrctly local”
= f(>2+ n?,ﬁ,t), we see that the second term is a partial de-t0 depend only om,,, then it would have “strictly loca

rivative with respect to position form _ ) ot BA _
Third, using the fact tha¢'"™ ""*=SC, we can rewrite the

commutator as

The Stouhal number, Sh, is defined as the ratio of the mea

I .
0 VI,P,D+ 5 (0 V)2F(X,p,t) + O(Kn?)

i e—iﬁr/ﬁﬁa,eiﬁr/h_ﬁa,
i (Ol W () = (P (O] ¥ (1) LNar HI=m -
7—0 T .
C'S'™n,, SC—n,,
(A7) = lim - . (A12)
7—0

The Knudsen number, Kn, is defined as the ratio of the
mean-free path to the characteristic length scale (K

—/IL). Therefore, we have the convective derivative rNow, n, andn, are related by the similarity transformation

(2.14, n,=5'n,,S, so the commutator reduces to
df(x,p,t) _ f(x+(rm/p),p.t)
dt at

+u-VE(X,p,t) ¢, C—n,

i ..
—[n, ,H]=Iim (A13)
1 h 7—0
- E(5-V)2f(>2,|5,t)+0(ShZ,Kn3),
Inserting this into Eq(A11) gives the final local form of the

(A8)  quantum Boltzmann equatidar f(x,p,t), which is

composed of a local term and a nonlocal advection term. In R

the local term, it is technically corredalbeit unconven- df(x,p,t)

tional) to explicitly write the partial time derivative’s depen- dt

dence on7, even thoughr—0. This is done to stress an

equivalence with the matrix element formulation given by notice that the collision term depends only on the wave

Eq.S(AS).d ite the “local ch - si function evaluated at timé and the occupancy of theth

econ " \meﬂhrewrl € the ?ﬁcﬁﬁ_c ar?gAe erm. 5 nce local state located at positioﬁ. However, if there exists

[W(t+7)=e"""[W(t)) and e"™"=1+iH7/A+O0(),  guantum superposition between particles at different points

we have in space, then¥(t)) cannot be written in separable tensor
product form over the spatial points. So in this case, the
collision term is “nonlocal.” Hence, when | say the lattice-

i Boltzmann equation is local in form, | mean this in a pseudo-

=Iim%(\P(t)|éTﬁaé—ﬁa|‘lf(t)>. (A14)

7—0

(W(t+7) [N, [P (t+ 7))

=(W(t)|n, | W (t))+ %(\P(tﬂ[ﬁa, AW (1)) classical sense, barring nonlocal quantum entanglements:
And this is why | said in the introduction of this paper that
+0(72). (A9)  the lattice-Boltzmann equation, which accounts for global
entanglement through the collision process, is an exact refor-
Using this equation in conjuction with E¢AG), we have mulation of the many-body Schiinger equation.
There is one more point to make in this appendix. From
of| x+ 15,5,t) the basic definitior{A3) for the total time rate of change of
m . ~ f(x,p,t), we see that EQA14) can be written as the follow-
f ot =¥ (O[[na: HI[¥ (D). (A10) ing “finite-difference” equation

046702-16



QUANTUM LATTICE-GAS MODEL FOR COMPUTATIONAL . .. PHYSICAL REVIEW E 63 046702

f(x+(7/m)p’,p’ H=F(x,p,t) +(¥(t)|CTh,C—n,|¥(1)). 00 0 O 0O 0 0 0
(A15) A 00 -1 0 o 0O 0 0 O

UTlo 0 0 of #"T|lo -1 0 of

This is the lattice-Boltzmann equatig¢see Eq(2.19 in Sec. 00 0 o O 0 0 0

Il B 2]. It is important to note that the Boltzmann equation is
still an exact representation of the particle dynamics, even (B3)
when expressed in finite-difference form. This is immedi-and

ately obvious when the identifyazé*ﬁa,é is inserted into

the collision term(W(t)|CS'n,, SC—n,|¥(t)). Then, the 0000
lattice-Boltzmann equation becomes a simple identity S 1—F= 0100
f(x+(7/m)p’,p’,0="F(X,p,t) + (W (t+ 7) [N | P (t+ 7)) 0 000
—(W(t)|n,|W(1)). (A16) 0 00O
.~ A 0 0 0O
In the case of a finite resolution latti¢ased in a computa- (1=ng)nz= 0 0 1 ol
tional simulation of the quantum lattice-gas systerte
; . . ) 0 0 0 O
lattice-Boltzmann equation is the appropriate formulation of
the particle dynamics. However, the quantum Boltzmann 100 0
equation(A14), in differentiable point form, becomes the
appropriate formulation of the particle dynamics when talk- N 0 00 O B4
ing about the system in the continuum limit. N1—N2= 000 O (B4)
0 00 -1

APPENDIX B: REPRESENTATION OF A TWO-QUBIT

GATE FOR A 2-SPIN SYSTEM We can represent a block diagonak4 unitary matrix in

terms of these five operators as follows:
In this appendix, we show that E@.3) is a manifestly

unitary operator that entangles two qubits according to the 100 O

SU(2) special unitary group. Let us consider a quantum spin 0 A B R R o o
system with only two spins. Then the Hilbert space is four 0 C D =Any(1-ny)— Ba{az—Ca;al
dimensional, and we choose the following basis kets in the

number representation: 0O 0 0 —1

+D(1-ny)n,+1-n;—n,.
(B5)

|00)= |10)= When the 2 2 block is a member of S@@) as given by Eq.

(3.1), this expression for a unitary matrix becomes a repre-

sentation of a universal gate given by Eg§.3.

(B1) In this appendix, we used a two-spin quantum system as
an example system for illustrating how a universal gate can
be expressed in terms of the multispin creation and annihila-
tion operators. Although we used a two-spin system in this
example, the procedure outlined here also works for a spin
system with an arbitrary number of spins.

All permutations of single fermion states may be imple-

mented by successive application of a “interchange opera-
tor” [22], here denoted b)i(aﬁr, where the permutations
occur between state at sitex and stateg’ at sitex’

o O O -
O O O

o
o O O ©
o
© o o o
O O O
o O O ©
S O O o

(B2)
Xaﬁ/:aLaB/JraT,aaﬂL 1—a£aa—a;,a3,. (B6)
Sincea; andaj have real components, the annihilation op-Thjs is a special case of the universal quantum gte;:
erators are the transpose of the matrices given in(B2): where 6=m/2, £=0 and {=0. The interchange operator

a,=(al)" anda,=(a])". The universal gate operator is ex- correctly handles any necessary phase change due to the anti-
pressed in terms of the following five operators: commutation relation$3.2).
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